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Abstract

The influence of a flow on the transfer of a polymer solution from a porous matrix to a flowing fluid is analysed. Since the flow modifies the

free energy of the solution, through stretching and orientation of the macromolecules, the thermodynamic driving force for polymer transport

is modified with respect to that of a quiescent fluid. The consequences of this modification for the extraction of a polymer from a porous

matrix are explored in detail, and the formal results are explicitly illustrated by means of a specific solution. For the particular example

analysed here, of possible interest in oil extraction or in microfluidic problems, the non-equilibrium effects may yield a reduction of the order

of 10% of the extraction rate.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Polymer extraction from a porous matrix is a problem of

much practical interest as, for instance, in oil extraction or

pollutant extraction from a soil, or in chromatographic

techniques, which have received a recent impulse from

microfluidics and nanofluidics situations. From a detailed,

fundamental point of view, one of the questions arising in

this situation is the expression for the thermodynamic force

driving the polymer from the porous matrix to the fluid

along a channel drilled in the matrix, which is the free

energy difference between the polymer in the pores and in

the fluid (the situation is sketched in Fig. 1). Both the

enthalpy and the entropy play thus a role in this process.

Recently, in order to study the effects of entropic barriers on

polymer motion, the role of the entropy difference between

a polymer placed in two neighbouring regions has been
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discussed by several authors [1–4]. Application of these

ideas to a practical situation as polymer extraction seems an

interesting topic for both non-equilibrium thermodynamics

and rheology.

When flowing from the porous medium to the bulk fluid,

the entropy of the polymer will be much higher in the latter

than in the channels of the former, because a much higher

number of microscopic configurations will be accessible for

it in the fluid. Usually, it is assumed that the motion of the

fluid where the polymer is going does not contribute to the

free energy. However, if the fluid is in motion along a

channel (much wider than the pores but sufficiently narrow

to have a relevant velocity gradient) the polymer will be

elongated and oriented by the flow, thus increasing its

internal energy and reducing its entropy with respect to its

corresponding value in the fluid at rest. This will have an

influence both on the entropy barrier as well as for the

entropy difference between the initial (porous matrix) and

the final (free fluid) states of the polymer.

In this paper, we want to take into account the flow

contribution to the free energy of the polymer in the fluid

and, consequently, on the thermodynamic force driving the

transport of the polymer from the porous matrix to the fluid.

These effects may be relevant in the practical extraction of

polymers from a porous matrix, in situations when relatively
Polymer 46 (2005) 10372–10377
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Fig. 1. Sketch of the situation considered in this paper. Polymers embedded

in the porous region are extracted from it by means of a flow of a suitable

solvent flowing along a cylindrical tube drilled in it.
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narrow channels are drilled into the porous matrix and a

solvent is made to flow along them. In Section 2 the flow

contribution to the polymer free energy is examined and the

equations describing its transfer from the matrix to the fluid

in the channel are settled. In Section 3, an explicit analysis

of the influence of the non-equilibrium contribution is

carried out, and finally, in Section 4, the results are

discussed.
2. Flow contribution to the polymer free energy

In the simplest situation, one may consider the polymer

as a freely-jointed chain constituted by N monomers of

length b. The corresponding free energy of a polymer

solution with n chains per unit volume at temperature T in a

fluid under a shear viscous pressure Pv is [5,6].

FðT ; n;PvÞ Z constant C
3nkBT

2Nb2
hR2ieq C

J

4
Pv : Pv (1)

where kB is the Boltzmann constant and hR2i the average of

the square of the end-to-end vector R. In a quiescent fluid,

this average is hR2ieq, but in the presence of a flow

characterized by the viscous pressure tensor Pv, hR2i is

modified. This modification is accounted for by the last term

on the right-hand side, where J is the steady-state

compliance. In previous analyses [7–11], we have studied

widely the influence of this term—with more refined

expressions for dilute, semidilute and entangled sol-

utions—in shear-induced diffusion, in the shear-induced

shift of the spinodal line of flowing polymer solutions and in

shear-induced concentration banding. All of them are

topics, which are focusing much recent attention [7,12–14].

The use of the viscous pressure as independent variables
is typical of the so-called extended irreversible thermodyn-

amics [15,16] but other approaches to the influence of the

flow on the polymer solutions may be found, for instance, in

[14,17–20], where the macromolecular configuration tensor

is taken as an independent variable instead of the viscous

pressure tensor. In the linear approximation, both tensors are

proportional to each other and it is possible to go directly

from the description based on the viscous pressure tensor to

that based on the configuration tensor.

Here, to be specific, we will consider a simple explicit

situation, in which a cylindrical channel of radius R0 and

length L has been drilled along the z-axis inside a porous

matrix of infinite extension in the x–z directions. We will

study the influence of the non-equilibrium term on the

quantity of practical interest, namely, the mass of polymer

extracted from the matrix per unit time

dw

dt
h

mass of polymer extracted

time
(2)

This quantity will be given, in the simplest situation, by

dw

dt
Z cðLÞQ (3)

where Q is the flow rate along the cylindrical channel and

c(L) is the average concentration of the polymer in the

outgoing solution. Such a quantity will depend on the

driving force, namely, the difference of chemical potential

of the polymer in the flowing fluid m and in the porous

matrix m1, and on the lateral area of the channel.

To obtain c(L) one needs to know the profile c(z) of the

average polymer concentration along the tube. From now on

we will restrict ourselves to an average concentration across

each transversal section of the tube; in fact, the exploration

of the transverse concentration profile as a function c(z,r),

both in the radius and the longitudinal position would be of

interest, but for our purposes here the average density is

sufficient. The equation governing the longitudinal concen-

tration profile is given by a combination of the mass

conservation equation and a phenomenological equation for

the polymer transfer across the surface between the porous

medium and the flowing fluid.

We assume that the rate of polymer transfer per unit

surface of the channel wall is given by

Jp Z a½m1ðT ; c1ÞKmðT ; c;Pv
rzÞ� (4)

where c1 is an effective concentration of polymer in the

porous matrix, Pv
rz the viscous pressure acting on the fluid,

and a a phenomenological coefficient (whose microscopic

meaning will be discussed in Section 4) describing the

transfer of the polymer between both media per unit area

and time. One of the new aspects of the present paper is to

take into consideration the fact that the flow may contribute

to the chemical potential in the fluid in such a manner than

the latter adopts the form

mðT ; c;Pv
rzÞ Z meqðT ; cÞCmflowðT ; c;P

v
rzÞ (5)
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instead of the classical local-equilibrium expression meq

(T,c).

If the phenomenological transport Eq. (4) is combined

with the mass conservation equation, one gets

Q
dc

dz
Z 2pR0afm1ðc1ÞKm½cðzÞ;Pv

rz�g (6)

Indeed, to obtain this expression we have equated the

polymer inflow from the porous matrix across the lateral

walls, 2pR0Jpdz, to the increase in the axial flow of polymer

through the transversal sections of the tube in z and zCdz,

namely

cðz CdzÞQKcðzÞQz
dc

dz

� �
Qdz (7)

Here, we will take a more detailed perspective, to explore

the role of the flow contribution to the chemical potential.

As a simplifying hypothesis it is assumed that equilibrium

chemical potential expression has the same form in both

regions; this is not necessarily true, because of the presence

of the solid matrix in the porous region. Nevertheless, as in

our previous works [7,10,11,21] we will take for the

equilibrium chemical potential of the polymer in the fluid

the Flory–Huggins expression

mFH

RT
Z ln f C ð1KNÞð1KfÞCcNð1KfÞ2 (8)

where the volume fraction f and the concentration c are

related by fZn1Nc/M2, being n1 the solvent molar volume

and M2 the molecular mass of the polymer and c the

interaction parameter. As an additional hypothesis, we also

assume effective values of the interaction parameter and

concentration for the porous region (c1 and c1, respect-

ively), which are in principle different from the interaction

parameter c in the fluid.

Using the auxiliary quantities

~z Z
z

L
; ~c Z ½h�c; Q0 Z

Q

R3
0

; ~w Z
½h�w

R3
0

(9)

with [h] the intrinsic viscosity, Eq. (6) can be written in a

compact form as

d ~c

d~z
Z

la0

Q0

mFHð ~c1;c1Þ

RT
K

mFHð ~c;cÞ

RT
K

mflowð ~c;P
v
rzÞ

RT

� �
(10)

being l and a0 the new coefficients

l Z
L

R0

; a0 Z
2p½h�RT

R0

a (11)

and R the gas constant. Note that in this notation, Eq. (3)

takes the form

d ~w

dt
Z ~cð1ÞQ0 (12)

As for the flow contribution to the chemical potential

namely, the second term on the right-hand side in (5), the

following expression [21] is taken, which is based on
extended irreversible thermodynamics [7,16].

mflow

RT
Z

Cv1M2½h�

4R2T2

M2½h�

v1

Fð ~cÞ

~c

�

C2
M2½h�

v1 ~c
KN

� �
P5ð ~cÞ

P6ð ~cÞ

�
hPv : Pvi (13)

where the transversal average hPv:Pvi is taken in order to

avoid the existence of a radial profile of viscous pressure

along the tube, consistently with our focusing on the average

polymer concentration. Notice that Eq. (13), which is valid

for more general models than the freely-connected chain, is

obtained by differentiation of the flow contribution to the

free energy [7,16] DGflowZ1/4 JV Pv:Pv with respect to the

number of moles of solute.

For dilute or semidilute solutions, for which Zimm and

Rouse models for polymers can be, respectively, applied, J

takes the form [5,7]

J Z
CM2

cRT
1K

hs

h

� �2

(14)

where CZ0.4 is the Rouse constant and CZ0.206 the Zimm

constant, M2 the molecular mass of the polymer and hs is the

viscosity of the pure solvent. We also assumed a viscosity

dependence on concentration given by

hð ~cÞ Z hsð1 C ~c Ck ~c2Þ (15)

where k stands for the Huggins constant.

If for the sake of simplicity we assume that the flowing

solution behaves as a Newtonian fluid, it can be shown that

the average of the square of the viscous pressure is given by

hPv : Pvi Z
16Q2

0

p2
h

2ð ~cÞ (16)

This average corresponds to the typical parabolic

velocity profile in Poiseuille flow. Note, however, that we

assume that the viscosity of the solution will be in principle

a function of the polymer concentration hð ~cÞ, which is a

realistic assumption.

An especially simple version of equation c(z) is obtained

when we assume that Pv does not influence the chemical

potential and c1zc, then

mFHð ~c1ÞKmFHð ~cÞ Z
vmFH

v ~c

� �
~c1

ð ~c1K ~cÞ (17)

In this case, Eq. (10) simplifies to

d ~c

d~z
Z

la0
0

Q0

ð ~c1K ~cÞ (18)

where a0
0 is given by a0

0Z ða0=RTÞðvmFH=v ~cÞ ~c1
. Inte-

gration of (18) lets us write for the reduced concentration

profile

~c Z ~c1 1Kexp K
la0

0

Q0

~z

� �� �
(19)
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from which Eq. (3) takes the form

d ~w

dt
Z Q0 ~c1 1Kexp K

la0
0

Q0

� �� �
(20)

In Section 3, we compare the results obtained from the

simple local-equilibrium Eq. (18) with the result obtained

from (10), incorporating the influence of the flow on the

chemical potential. In particular, we make this comparison

for a particular polymer solution.
Fig. 3. The same of Fig. 2 for a0lZ10.
3. Explicit solution and application to polymer

extraction

To be explicit, in this section we will consider polymer

extraction by working with a specific polymer solution,

namely, polystyrene in transdecalin, for which most of the

necessary parameters are known [7,21]. Of course, the

analysis would be of higher practical interest if oil was

considered, but we do not know, at present, the necessary

parameters.

In Figs. 2 and 3 the longitudinal concentration profile

along the tube is plotted as a function of the longitudinal

position. Solid lines refer to the results of the full Eq. (10),

incorporating the effects of the non-equilibrium chemical

potential, whereas dashed lines correspond to the simple

exponential profile (19), where such effects where not

incorporated. Figs. 2 and 3 correspond to different values of

the coefficient a0l (namely, 0.5, corresponding to a short

tube or to a low exchange coefficient for the polymer

between the soil and the tube, and 10, namely, a longer tube

or a higher exchange coefficient). In both cases, the profiles

are obtained for different values of Q0hQ/R3. The gross
Fig. 2. Reduced concentration profile along the tube for a0lZ0.5 for

several values of the reduced flow rate. The dashed line corresponds to the

classical approximation, in which the flow contributions to the chemical

potential of the polymer are neglected, whereas the solid line takes them

into account.
features of the profiles are as expected: Of course, they

increase with z and, furthermore, for a given z they decrease

with the flow rate. The latter feature, though less obvious

than the first one, was expected, too, because the higher the

value of Q the farther will be the system from equilibrium

and the lower will be the concentration c(z) at any value of z

along the tube.

The original aspect of our work is to study the influence

of the non-equilibrium contribution of the flow to the

chemical potential of the polymer on the extraction features.

This is mainly reflected in the comparison of the full lines

(including this feature) and discontinuous lines (the simplest

model). In principle, one should naively expect that the

concentration in the tube would be less when the flow

contribution is included, because in this case the free energy

of the polymer on the flowing fluid is higher than in the case

when the flow contribution is ignored, and, as a

consequence, the thermodynamic force driving the polymer

transfer from the soil to the tube will be less than in usual

circumstances. This is indeed found in all the lines of Fig. 3

and in the higher line in Fig. 2. However, this is not so for

the two lower curves in Fig. 2, namely, for high values of the

flow. This is due because these curves correspond to a low

concentration; a detailed analysis shows that, due to the non-

monotonic dependence of the non-equilibrium contribution

DGflow on the concentration, the flow contributions to the

chemical potential are negative for low densities, this

raising the transport from the porous medium to the fluid,

and they are positive for high densities, thus reducing such a

transport.

Concerning the rate of extraction d ~w=dt as a function of

the reduced flow rate Q0, it is plotted in Figs. 4 and 5 for

different values of the coefficient a0l. Solid lines refer to the

full situation and dashed lines correspond to the classical

situation. In Fig. 4, it is seen that the non-equilibrium effects

lower the extraction rate, in 12 and 10% approximately for

a0lZ10 and a0lZ5, respectively. In contrast, for small



Fig. 4. Polymer extraction rate (in reduced units) as a function of the

reduced flow rate of the fluid, for a0lZ5 and a0lZ10. The dashed line

corresponds to the classical approximation in which the flow contributions

to the chemical potential of the polymer are neglected, whereas the solid

line takes them into account.
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values of a0l and for high enough values of Q0, Fig. 5 shows

a small enhancement of the extraction rate with respect to

the classical prediction. This is due because in this situation

the concentration is usually small, and the flow contribution

to the chemical potential is negative, as we have commented

above. In fact, the value of Q0 for which the extraction rate

in the full non-equilibrium model becomes higher than in

the classical model, let us denote it as Q0
0, increases with the

parameter a0l (in fact, it increases as Q0
0 z60a0l); thus, for

high values of a0l corresponding to Fig. 4, all the values of

Q0 considered in the figure are below this crossover value

and, correspondingly, the classical value is above the

general non-equilibrium value.

The fact that the non-equilibrium effects are especially

important for high values of a0l is easy to understand from a

qualitative point of view. Indeed, high values of l for given

values of Q0 and of the tube length L, correspond to narrow
Fig. 5. The same of Fig. 4 for a0lZ0.5 and a0lZ1.
channels, where the velocity gradients will be higher and,

therefore, its stretching and ordering influence will be

higher and so will be non-equilibrium effects. This is also

the case of parameter a0, which is inversely proportional to

the radius of the channel.
4. Concluding remarks

Before concluding this paper, it is interesting to discuss

from a microscopic point of view the transport coefficient a

used in Eq. (4) to describe the polymer transport from the

porous matrix to the fluid. Now we will give a simple

microscopic interpretation, by following the general lines

suggested in [1]. Assume that the polymer concentration in

the porous matrix is c1. The polymer molecules will escape

from the matrix to the fluid, driven by the entropy increase

they find in the fluid. The polymer flow per unit area and

time will be

Jp Z ac1 Z �vc1 (21)

where �v is the average velocity of the outgoing polymer. We

will consider that they have a length L2 on side 2 and a

length L1 on the porous matrix (Fig. 1). The velocity of a

chain may be obtained by equation of the driving force,

namely fZK(vF/vL1)ZT(vS/L1) to the friction force,

namely,fZ2bN1v, 2 being the friction coefficient on one

monomer and b the length of a monomer. Equating both

expressions one finds

�v Z
1

bN

ðNb

b

vð[Þd[ Z
1

bN

ðNb

b

TDs

2[
d[ Z

TDs

2bN
ln N (22)

Here, Dshs1Ks2 is the entropy difference of a monomer

in the fluid and in the porous matrix. This term gives us a

microscopic interpretation of the transport coefficient.

Furthermore, this indicates that, in principle, the flow

could affect not only the expression of the chemical

potential considered in the previous sections, but also the

transport coefficient describing the kinetics of the exchange.

A more complete analysis of the situation, thus, would be

achieved by assuming that a itself may be a function of the

flow rate. We will not undertake this analysis here.

In summary, we have studied the transfer of polymers

from a porous matrix to a flowing fluid solvent, in contrast to

previous papers [1,2] considering the transfer to a quiescent

fluid. We have emphasized the flow contributions to the free

energy of the polymer solution and, therefore, to the

thermodynamic force driving the polymer from the porous

matrix to the flowing fluid, which, in the situations

considered, may yield a reduction of even a 10 or 12%.

Considering the effects of the fluid flow is especially

realistic in some situations as for instance the analysis of

polymer extraction from a porous matrix (let us say oil from

some porous matrix).
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To check the predictions in a detailed quantitative way

would require in principle to know the concentration of the

polymer in the soil and the porosity of the soil. This is

difficult in usual circumstances, but it could be done in detail

in microfluidic situations, where artificial media with

controlled porosity may be built and where solute

concentration may be measured with high precision,

especially in two-dimensional arrays [22–25] much used

for DNA chromatography. Since DNA is a charged

molecule (a polyelectrolyte) the detailed analysis involving

it would be more complicated than the one presented here,

which is valid for neutral polymers.

The fact that a test of the details of our equations could

be difficult in practice in situations where such details as

matrix porosity and polymer concentration are not known

with precision, does not mean that they have no practical

interest: Indeed, they predict a dependence of the polymer

extraction rate as a function of the solvent flow rate which

is different from that of the conventional theory, as plotted

in Figs. 4 and 5. Thus, one could check the mentioned

flow-rate dependence and compare it with the one

expected in usual models ignoring the dependence of

the free energy of the polymer solution on the viscous

pressure.
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